Temperature dependence of acoustic vibrations of CdSe and CdSe-CdS core-shell nanocrystals measured by low-frequency Raman spectroscopy.

نویسندگان

  • A Jolene Mork
  • Elizabeth M Y Lee
  • William A Tisdale
چکیده

We measure the temperature dependence of breathing-mode acoustic vibrations of semiconductor nanocrystals using low-frequency Raman spectroscopy. In CdSe core-only nanocrystals, the lowest-energy l = 0 mode red-shifts with increasing temperature by ∼5% between 77-300 K. Changes to the interatomic bond distances in the inorganic crystal lattice, with corresponding changes to the bulk modulus and density of the material, contribute to the observed energy shift but do not fully explain its magnitude across all nanocrystal sizes. Invariance of the Raman linewidth over the same temperature range suggests that the acoustic breathing mode is inhomogeneously broadened. The acoustic phonons of CdSe/CdS core-shell composite nanocrystals display similar qualitative behavior. However, for large core-shell nanocrystals, we observe a higher-order Raman peak at approximately twice the energy of the l = 0 mode, which we identify as a higher spherical harmonic-the n = 2, l = 0 eigenmode-rather than a two-phonon scattering event.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS

CdSe nanocrystals (NCs) were obtained from cadmium sulfate and sodium selenosulfate in aqueous gelatin solutions. A near-bandgap emission of CdSe NCs was noticeably enhanced after passivation with CdS or ZnS. Resonant Raman scattering spectra of the passivated NCs revealed new peaks attributed to the formation of the sulfide shells around CdSe cores. The peaks observed for the CdSe/CdS core–she...

متن کامل

Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals.

Blinking of zinc blende CdSe-based core/shell nanocrystals is studied as a function of shell materials and surface ligands. CdSe/ZnS, CdSe/ZnSe/ZnS and CdSe/CdS/ZnS core/shell nanocrystals are prepared by colloidal synthesis and six monolayers of larger bandgap shell materials are grown over the CdSe core. Organic-soluble nanocrystals covered with stearate are made water-soluble by ligand excha...

متن کامل

Synthesis and Characterization of Water-dispersed CdSe/CdS Core-shell Quantum Dots Prepared via Layer-by-layer Method Capped with Carboxylic-functionalized Poly(Vinyl Alcohol)

The main goal of this work was to synthesize CdSe/CdS (core-shell) nanoparticles stabilized by polymer ligand using entirely aqueous colloidal chemistry at room temperature. First, the CdSe core was prepared using precursors and acid-functionalized poly(vinyl alcohol) as the capping ligand. Next, a CdS shell was grown onto the CdSe core via the layer-by-layer technique. The CdS shell was formed...

متن کامل

Morphology-induced phonon spectra of CdSe/CdS nanoplatelets: core/shell vs. core-crown.

Recently developed two-dimensional colloidal semiconductor nanocrystals, or nanoplatelets (NPLs), extend the palette of solution-processable free-standing 2D nanomaterials of high performance. Growing CdSe and CdS parts subsequently in either side-by-side or stacked manner results in core-crown or core/shell structures, respectively. Both kinds of heterogeneous NPLs find efficient applications ...

متن کامل

Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy.

Biexciton photoluminescence (PL) quantum yields (Q(2X)) of individual CdSe/CdS core-shell nanocrystal quantum dots with various shell thicknesses are derived from independent PL saturation and two-photon correlation measurements. We observe a near-unity Q(2X) for some nanocrystals with an ultrathick 19-monolayer shell. High Q(2X)'s are, however, not universal and vary widely among nominally ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 41  شماره 

صفحات  -

تاریخ انتشار 2016